62 research outputs found

    Applying human-centered AI in developing effective human-AI teaming: A perspective of human-AI joint cognitive systems

    Full text link
    Research and application have used human-AI teaming (HAT) as a new paradigm to develop AI systems. HAT recognizes that AI will function as a teammate instead of simply a tool in collaboration with humans. Effective human-AI teams need to be capable of taking advantage of the unique abilities of both humans and AI while overcoming the known challenges and limitations of each member, augmenting human capabilities, and raising joint performance beyond that of either entity. The National AI Research and Strategic Plan 2023 update has recognized that research programs focusing primarily on the independent performance of AI systems generally fail to consider the functionality that AI must provide within the context of dynamic, adaptive, and collaborative teams and calls for further research on human-AI teaming and collaboration. However, there has been debate about whether AI can work as a teammate with humans. The primary concern is that adopting the "teaming" paradigm contradicts the human-centered AI (HCAI) approach, resulting in humans losing control of AI systems. This article further analyzes the HAT paradigm and the debates. Specifically, we elaborate on our proposed conceptual framework of human-AI joint cognitive systems (HAIJCS) and apply it to represent HAT under the HCAI umbrella. We believe that HAIJCS may help adopt HAI while enabling HCAI. The implications and future work for HAIJCS are also discussed. Insights: AI has led to the emergence of a new form of human-machine relationship: human-AI teaming (HAT), a paradigmatic shift in human-AI systems; We must follow a human-centered AI (HCAI) approach when applying HAT as a new design paradigm; We propose a conceptual framework of human-AI joint cognitive systems (HAIJCS) to represent and implement HAT for developing effective human-AI teamingComment:

    Enabling Human-Centered AI: A Methodological Perspective

    Full text link
    Human-centered AI (HCAI) is a design philosophy that advocates prioritizing humans in designing, developing, and deploying intelligent systems, aiming to maximize the benefits of AI to humans and avoid potential adverse impacts. While HCAI continues to influence, the lack of guidance on methodology in practice makes its adoption challenging. This paper proposes a comprehensive HCAI framework based on our previous work with integrated components, including design goals, design principles, implementation approaches, interdisciplinary teams, HCAI methods, and HCAI processes. This paper also presents a "three-layer" approach to facilitate the implementation of the framework. We believe this systematic and executable framework can overcome the weaknesses in current HCAI frameworks and the challenges currently faced in practice, putting it into action to enable HCAI further

    Agent Teaming Situation Awareness (ATSA): A Situation Awareness Framework for Human-AI Teaming

    Full text link
    The rapid advancements in artificial intelligence (AI) have led to a growing trend of human-AI teaming (HAT) in various fields. As machines continue to evolve from mere automation to a state of autonomy, they are increasingly exhibiting unexpected behaviors and human-like cognitive/intelligent capabilities, including situation awareness (SA). This shift has the potential to enhance the performance of mixed human-AI teams over all-human teams, underscoring the need for a better understanding of the dynamic SA interactions between humans and machines. To this end, we provide a review of leading SA theoretical models and a new framework for SA in the HAT context based on the key features and processes of HAT. The Agent Teaming Situation Awareness (ATSA) framework unifies human and AI behavior, and involves bidirectional, and dynamic interaction. The framework is based on the individual and team SA models and elaborates on the cognitive mechanisms for modeling HAT. Similar perceptual cycles are adopted for the individual (including both human and AI) and the whole team, which is tailored to the unique requirements of the HAT context. ATSA emphasizes cohesive and effective HAT through structures and components, including teaming understanding, teaming control, and the world, as well as adhesive transactive part. We further propose several future research directions to expand on the distinctive contributions of ATSA and address the specific and pressing next steps.Comment: 52 pages,5 figures, 1 tabl

    New paradigmatic orientations and research agenda of human factors science in the intelligence era

    Full text link
    Our recent research shows that the design philosophy of human factors science in the intelligence age is expanding from "user-centered design" to "human-centered AI". The human-machine relationship presents a trans-era evolution from "human-machine interaction" to "human-machine/AI teaming". These changes have raised new questions and challenges for human factors science. The interdisciplinary field of human factors science includes any work that adopts a human-centered approach, such as human factors, ergonomics, engineering psychology, and human-computer interaction. These changes compel us to re-examine current human factors science's paradigms and research agenda. Existing research paradigms are primarily based on non-intelligent technologies. In this context, this paper reviews the evolution of the paradigms of human factors science. It summarizes the new conceptual models and frameworks we recently proposed to enrich the research paradigms for human factors science, including a human-AI teaming model, a human-AI joint cognitive ecosystem framework, and an intelligent sociotechnical systems framework. This paper further enhances these concepts and looks forward to the application of these concepts. This paper also looks forward to the future research agenda of human factors science in the areas of "human-AI interaction", "intelligent human-machine interface", and "human-AI teaming". It analyzes the role of the research paradigms on the future research agenda. We believe that the research paradigms and agenda of human factors science influence and promote each other. Human factors science in the intelligence age needs diversified and innovative research paradigms, thereby further promoting the research and application of human factors science.Comment: 26 pages, in Chinese languag

    Personality Openness Predicts Driver Trust in Automated Driving

    Get PDF
    Maintaining an appropriate level of trust in automated driving (AD) is critical to safe driving. However, few studies have explored factors affecting trust in AD in general, and no study, as far as is known, has directly investigated whether driver personality influences driver trust in an AD system. The current study investigates the relation between driver personality and driver trust in AD, focusing on Level 2 AD. Participants were required to perform a period of AD in a driving simulator, during which their gaze and driving behavior were recorded, as well as their subjective trust scores after driving. In three distinct measures, a significant correlation between Openness and driver trust in the AD system is found: participants with higher Openness traits tend to have less trust in the AD system. No significant correlations between driver trust in AD and other personality traits are found. The findings suggest that driver personality has an impact on driver trust in AD. Theoretical and practical implications of this finding are discussed

    Visual Working Memory Capacity Does Not Modulate the Feature-Based Information Filtering in Visual Working Memory

    Get PDF
    Background: The limited capacity of visual working memory (VWM) requires us to select the task relevant information and filter out the irrelevant information efficiently. Previous studies showed that the individual differences in VWM capacity dramatically influenced the way we filtered out the distracters displayed in distinct spatial-locations: low-capacity individuals were poorer at filtering them out than the high-capacity ones. However, when the target and distracting information pertain to the same object (i.e., multiple-featured object), whether the VWM capacity modulates the featurebased filtering remains unknown. Methodology/Principal Findings: We explored this issue mainly based on one of our recent studies, in which we asked the participants to remember three colors of colored-shapes or colored-landolt-Cs while using two types of task irrelevant information. We found that the irrelevant high-discriminable information could not be filtered out during the extraction of VWM but the irrelevant fine-grained information could be. We added 8 extra participants to the original 16 participants and then split the overall 24 participants into low- and high-VWM capacity groups. We found that regardless of the VWM capacity, the irrelevant high-discriminable information was selected into VWM, whereas the irrelevant fine-grained information was filtered out. The latter finding was further corroborated in a second experiment in which the participants were required to remember one colored-landolt-C and a more strict control was exerted over the VWM capacity

    Dissociated Mechanisms of Extracting Perceptual Information into Visual Working Memory

    Get PDF
    The processing mechanisms of visual working memory (VWM) have been extensively explored in the recent decade. However, how the perceptual information is extracted into VWM remains largely unclear. The current study investigated this issue by testing whether the perceptual information was extracted into VWM via an integrated-object manner so that all the irrelevant information would be extracted (object hypothesis), or via a feature-based manner so that only the target-relevant information would be extracted (feature hypothesis), or via an analogous processing manner as that in visual perception (analogy hypothesis).High-discriminable information which is processed at the parallel stage of visual perception and fine-grained information which is processed via focal attention were selected as the representatives of perceptual information. The analogy hypothesis predicted that whereas high-discriminable information is extracted into VWM automatically, fine-grained information will be extracted only if it is task-relevant. By manipulating the information type of the irrelevant dimension in a change-detection task, we found that the performance was affected and the ERP component N270 was enhanced if a change between the probe and the memorized stimulus consisted of irrelevant high-discriminable information, but not if it consisted of irrelevant fine-grained information.We conclude that dissociated extraction mechanisms exist in VWM for information resolved via dissociated processes in visual perception (at least for the information tested in the current study), supporting the analogy hypothesis

    A Seamless Image-Stitching Method Based on Human Visual Discrimination and Attention

    No full text
    Stitching gaps and misalignments in mosaic images can severely degrade the human visual perception of mosaic effects. Image stitching plays a key role in eliminating these unpleasant defects. In this paper, an image-stitching method for mosaic images with invisible seams is proposed, according to the research on the human visual system (HVS). By quantifying the human visual attention of images and visual discrimination about luminance difference and fine dislocations, each pixel in the stitching region is given a priority value for tracing a stitching line. Coupled with the processing of an optimal stitching line locating method and the multi-band blending algorithm, the pixels of discontinuous items in mosaic images decrease significantly and the stitching line is almost invisible. This study provides a new insight into the image-stitching field, and the experiments show that the results of the proposed method are more consistent with the human visual system in creating high-quality image mosaics
    • …
    corecore